Table of Nucleophiles

Special Case

Tert-Butoxide (tBuO[•]) is a strong base, but is not a nucleophile due to steric hindrance.

Substitution/Elimination Decision Map

Substitution vs. Elimination Examples:

Methyl Haloalkanes (CH3X) -> Only Sy2 is possible

Tertiary (3°) Haloalkanes

E2 Reaction Considerations:

When analyzing highly substituted haloalkanes for a possible E2 reaction:

1. You need to identify the most stable possible alkene (most highly substituted, *trans* over *cis*) that could be made (Zaitsev product).

- 2. Given the Zaitsev product you have identified, verify which anti-periplanar H atom(s) can be removed during the reaction to determine whether the product is E or Z.
- 3. You often need to rotate bonds to identify the particular H atom and configuration that reacts to give the alkene product.

H and Br not anti-periplanar

Putting it all together:

E2 Reaction of cyclohexane derivatives:

When analyzing highly substituted haloalkanes for a possible E2 reaction:

- 1. You need to identify the most stable possible alkene (most highly substituted, *trans* over *cis*) that could be made (Zaitsev product).
- 2. Given the Zaitsev product you have identified, verify which anti-periplanar H atom(s) can be removed during the reaction to determine if that product can be made.
- 3. You often need to flip chairs in cyclohexane derivatives to identify the particular H atom and configuration that reacts to give the alkene product.

Classic Examples:

S_N2 Reactions of Cyclohexanes:

<u>Rule</u>: The halogen must be axial to react in an SN2 mechanism in a cyclohexane derivative. Geminal Dihaloalkanes

Vicinal Tetrahaloalkanes

Alkynes

Aldehydes/Ketones

Vicinal Dihaloalkanes

Vicinal Dials

Alkenes

Alcohols

Halohydrins

Haloalkanes

Alkanes

Geminal Dihaloalkanes

Vicinal Tetrahaloalkanes

Aldehydes/Ketones

Vicinal Dials

Alcohols

Halohydrins

Various SNZ Products

Geminal Dihaloalkanes Vicinal (Br, CP, F) Tetrahaloalkanes لأمرسي R-C-R D (sia)2BH nes R-CEC-H Terminal 1)3 NaNH3 2) HC, H2O, Hosoy, Aldehydes/Ke H2SOy, H2O tones end intermediale ц Ц NPS. Double 2 NaNH3 R-CEC-R Edernel Lindhar Catalyst $\widehat{\gamma}$ product ্০৵ Vicinal Product Vicinal Dials Dihaloalkanes -) NaH503 e HN ш کر 0.00 • ~ Z X2 (Er CE Adsorption on metal surface ź 2) H202/HOO it i Alcohols Markounikov, Mixal, Carbo cation >> k enes ROOR IN or heat (catalytic) Narkovnikov, Radical H2O H2500 L S D (cl,Br,I Markovnikov Carlocatio Rule A Adsorption on metal Base (Br.G) X-H pto, pde, Ngo Haloalkan Zaitser's X2/H2O (excess) Halohydrins pre, pde, Nio d-it t es kovni kov Anti 3-membered ring Various Nucleophiles SN2 InVERSION から Radical Chains Process л Т Various Su2 Bra heat 2 Products Br ends up on more substituted Not shown: Alkene NBS & Habalkene Alkanes Allylic radical intermediate Most stable alkere product

A) **You must have your entire roadmap learned** so you can recite the NIRRS parameters for each reagent, i.e. Nature of overall transformation ("locations" on the roadmap), the Intermediate or transition state (carbocation, anti-periplanar etc.), the Reagents and how to designate them, as well as any Regiochemistry (Markovnikov, etc.) and any appropriate Stereochemistry (syn, anti, InVERSiON, scrambled, etc).

B) **Work backwards** (learn to RECOGNIZE the appropriate reagents and starting materials by looking at the products) from the final product. DO NOT try to work forward from the starting materials. Please trust me on this.

C) **Count carbons** in the starting material(s) and product(s) to see if any carbon-carbon bonds need to be broken or made, thereby zeroing in on key steps. This will be far more important next semester, so you should get used to doing this now.

D) Pretty much all synthesis problems in OChem 1 involve traveling "north or south" on the so-called "I-35" reactions (alkanes SA, haloalkanes NB/SM, alkenes ATX, vicinal dihaloalkanes Waco, alkynes DFW) at least part way at some point during the synthesis. This is not a promise or a rule, just an observation.

Bloom's Taxonomy of Learning

Signature	Pg 17	(11)
-----------	-------	------

20. These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned provided that the product(s) you draw for each step is/are the predominant one(s). Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. You must draw all stereoisomers formed, and use wedges and dashes to indicate chirality at each chiral center. Write racemic when appropriate. **All the carbons of the product must come from carbons of the starting material.**

B) (4 pts)

20. These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned provided that the product(s) you draw for each step is/are the predominant one(s). Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. You must draw all stereoisomers formed, and use wedges and dashes to indicate chirality at each chiral center. Write racemic when appropriate. **All the carbons of the product must come from carbons of the starting material.**

Recognize: The product is a *trans* dichlorocyclohexane tht must result from the reaction of an alkene (cyclohexene) with Cl₂. **Recognize**: The cyclohexene comes from the usual "I-35" combination of halogenation of an alkane with light (the only reaction that uses an alkane starting material) followed by an E2 in strong base such an alkoxide (NaOR).

See Reactions on Roadmap Below

20. These are synthesis questions. You need to show how the starting material can be converted into the product(s) shown. You may use any reactions we have learned provided that the product(s) you draw for each step is/are the predominant one(s). Show all the reagents you need. Show each molecule synthesized along the way and be sure to pay attention to the regiochemistry and stereochemistry preferences for each reaction. You must draw all stereoisomers formed, and use wedges and dashes to indicate chirality at each chiral center. Write racemic when appropriate. **All the carbons of the product must come from carbons of the starting material.**

Recognize: The product is an aldehyde that can be made from a primary alcohol, ozonolysis of an alkene (breaks carbon-carbon bond so not possible here) or from an alkyne. Choose the latter because an alkyne can be made from the starting vicinal dihaloalkane using base, in this case three equivalents of NaNH₂ followed by mild acid workup because the product is a terminal alkyne.

See Reaction, on Roadnop Below

Geminal Dihaloalkanes Vicinal (BT, CR, F) Tetrahaloalkanes لامد الاركار R-C-H R-C-R D (sia)2BH ics Aldehydes Ketones R-CSC-H Terminal 1) 3 NaNH 2) Ha, H H2 504, H2 504, H2 mormediale ち Product Lindlar Catalyst 2 product Vicinal E product Vicinal Dials BREN Rihaloalkanes e HN کرد Ns. 0.04 X, Crat Adsorption on metal surface 3-m-ben ź 2) H202/HOO BH3 THE W Machanikov, Mixal, Carloo cotha, V H-Br ROOR Inv or heat roon Markovnikov, Radical Alcohols (catalytic) H20 H2504 (Cl,Br,I L S D Markovnikov Carlocation Rule A Adsorption on metal Base (Br.G) X-H Pto, Pde, No Haloalkan 2 Zaitsou's X2/H2O (excess) Halohydrins pre, pde, Nio kovni kov Anti 3-membered ring Various Nucleophiles SN2 InVERSION から Radica | Chain Process л Т Various Su2 Bra heat 2 Products Br ends up on more substituted Not shown: Alkene NBS & Habalkene Alkanes Allylic radical intermediate Most stable alkere product